
Build Your Own Extension
ReSharper Extensibility
Matt Ellis

Fi
n

it
e

d
ev

re

so
u

rc
es

Innovation

Separate
release
cycle

Third party
frameworks

C
o

rp
o

rate p
lu

gin
s

Non-“blessed”
libraries

Monetisation

Why?

How?

Plugins – full access to ReSharper’s API

Live Templates – Generate code snippets

Structural Search and Replace – Declarative. As you type. Alt+Enter replace

External Annotations – hints for ReSharper’s code analysis

Plugins
Compiled assembly (.net 3.5)

No plugin API

“OpenAPI” – same API as ReSharper devs

Very extensible

Sensitive to product evolution
(i.e. breaking changes across versions)

API is binary compatible between
maintenance releases

Usually (but not always) source
compatible between minor releases

Rule of thumb: Support last two major
versions (i.e. 7.1 and 8.0, or 7.1 and 8.1)

Use Anti-Corruption Layer pattern for
compatibility

Code cleanup module

What can plugins do?

Generator

Options page

Actions and menus

Context actions

Analysers
Quick fixes

Live template macro

Code completion

What else can plugins do?

Refactoring

Unit testing

Reference provider

Language support

Read/write ASTs
FILE FORMATS Full fidelity abstract syntax tree

Strongly typed navigation

Modifying the tree updates the
document text

References to semantic model

C#, VB

HTML, CSS, Javascript

ASPX (ashx, ascx, asmx, asax, skin)

Razor (C# and VB)

Xml, DTD

XAML

WinRT appxmanifest

Build scripts (nant, msbuild)

Web.config, App.config

Xml documentation

C++ and TypeScript (coming soon)

Architecture

Features

Simplified view – 3 layers

PSI (Program Structure Interface)

Platform

Platform
Core .net platform. Shared between
ReSharper, dotCover, dotTrace,
dotPeek

Shell provides app services – change
propagation, threading, dispatcher,
read/write locks, logging, extensions

Component Model – ReSharper’s IOC
container

Project Model works with projects,
files and references

Document Model and Text Control
manipulate files

Util – useful base functionality, e.g.
xml reading/writing, tuples, registry,
file system paths, rich text, etc.

PSI

Platform

Shell/UI Settings
Component

Model
Project
Model

Document
Model

Util …

Features

Program Structure
Interface (PSI)
File parsers

Builds Abstract Syntax Trees (AST)

Semantic representation from ASTs
(e.g. type resolution)

Transactions for modification

Modifying PSI updates document text

References between nodes in ASTs

Caching

PSI

Transactions

References

Caching

Semantic information

Syntax parsing

• C#, VB, HTML, CSS, JS, XML, etc.

Platform

Features

Features

Features

Refactoring Navigation
Code

Completion
Analysis and
Quick fixes

Code
cleanup

Live
Templates

Unit Testing …

User facing features

Interrogates and manipulates PSI

Provides UI – interacts with
documents, dialogs for refactoring
parameters, etc.

PSI

Platform

Plugins
Plugins can span whole architecture
stack

Usually live at Features level

Implement Feature interfaces to
integrate with e.g. code completion,
unit testing, etc.

Implement PSI interfaces for e.g.
caching, language support

Less likely to implement something in
Platform

PSI

Platform

Plugins Features

Visual Studio

PSI

Platform

Plugins

Visual Studio

Features

Platform abstracts and interfaces with VS

Plugins are usually VS version agnostic

Can consume VS interfaces, but becomes
VS version specific

Cannot export interfaces via MEF

VSIX integration
(github.com/JetBrains/resharper-vsix)

resharper-vsix – install VSIX extensions
bundled in a ReSharper extension

vsix2resharper – load ReSharper
extensions bundled in a VSIX

http://github.com/JetBrains/resharper-vsix
http://github.com/JetBrains/resharper-vsix
http://github.com/JetBrains/resharper-vsix
http://github.com/JetBrains/resharper-vsix
http://github.com/JetBrains/resharper-vsix
http://github.com/JetBrains/resharper-vsix

SDK
Reference assemblies, pdb & xml
doc
Build targets & tools
Visual Studio templates
Testing
Samples

Checked build of ReSharper
Exceptions reported
More details in exceptions (data
dictionary)
Asserts, consistency checks,
tracing

dotPeek – point at SDK bin dir

NuGet – packaging and distribution

Building

Command line switches

devenv.exe /ReSharper.LogLevel Verbose
 /ReSharper.LogFile "C:\...\rs.log"
 /ReSharper.Plugin "C:\...\plugin.dll"
 /ReSharper.Internal

Testing

AccessorMissing.cs:

Functional testing, not unit testing

Instantiates a ReSharper environment,
with solution and project(s)

Base classes provided, e.g.
CSharpHighlightingTest,
CSharpContextActionExecuteTestB

ase, BaseTestWithSingleProject

Processes source file, compares
output to “gold” file

Gold file contains annotations for
warnings and highlights class Foo {

 public int Bar |{ }|(0)
 public int this[int i] |{ }|(1)
}

(0): ReSharper Underlined Error Highlighting: Accessor declaration is missing
(1): ReSharper Underlined Error Highlighting: Accessor declaration is missing

AccessorMissing.gold.cs:

class Foo {
 public int Bar { }
 public int this[int i] { }
}

Test.cs:

public class CSharpHighlightingTest : CSharpHighlightingTestNet4Base
{
 protected override string RelativeTestDataPath
 {
 get { return @"Daemon\CSharp"; }
 }

 [Test] public void testAccessorMissing()
 {
 DoNamedTest2();
 }
}

Annotations
“Hints” to ReSharper’s analysis

Add binary reference to
JetBrains.Annotations.dll

Or paste directly into your own code
ReSharper » Options » Code Annotations

CanBeNull, NotNull

StringFormatMethod

InvokerParameterName

NotifyPropertyChangedInvocator

ContractAnnotation

UsedImplicitly, MeansImplicitUse,
PublicAPI

InstantHandle, Pure

AspMvcController, AspMvcModelType,
AspMvcView

Etc.

External Annotations
JetBrains.Annotations in an .xml file

Applies annotation attributes to type members

Ship side-by-side with dll or in product dir

Ship as extension in ReSharper 8

<assembly name="Catel.Core"> <!-- Annotations for any version of Catel.Core.dll -->

 <!-- Same as [NotifyPropertyChangedInvocator("propertyName")] on RaisePropertyChanged(string propertyName) -->
 <member name="M:Catel.Data.ObservableObject.RaisePropertyChanged(System.String,System.Object)">
 <attribute ctor="M:JetBrains.Annotations.NotifyPropertyChangedInvocatorAttribute.#ctor(System.String)">
 <argument>propertyName</argument>
 </attribute>
 </member>
</assembly>

<assembly name="mscorlib, Version=4.0.0.0"> <!-- Annotations for mscorlib.dll 4.0 -->

 <!-- Same as String.IndexOf([NotNull] string value, int startIndex, StringComparison type) -->
 <member name="M:System.String.IndexOf(System.String,System.Int32,System.Int32,System.StringComparison)">
 <parameter name="value">
 <attribute ctor="M:JetBrains.Annotations.NotNullAttribute.#ctor" />
 </parameter>
 </member>
</assembly>

Live Templates
Expand snippets

Surround code (e.g. try/catch)

Create files (multiple files in R# 8)

Parameters and macros
Macros extensible via plugins

Special macros:
END for final caret position
$SELECTION$ for surround templates

Set availability scope

Structural Search
and Replace
Declarative code patterns

Find and replace on demand
(via ReSharper » Find menu)

Edit saved patterns via Options dialog

Settings
Live Templates + SSR stored in
.dotSettings files

Add settings files in Manage Options
dialog

Files become “layers” override settings
in lower layers

Create file, then use “Save To” in
options, or the drop down in
Templates Explorer

.dotSettings file stores all settings (e.g.
code style, inspection severity, etc.)

Distribution
Extensions distributed as NuGet packages

Browse new, see updates, view installed

Search

Diagnostic information for installed
extensions

Dependencies on other extensions

Enable/disable

Pre-release

Settings allows for extra sources
(e.g. TeamCity, myget.org, UNC path)

VS2010+

Hosting
packages
NuGet.exe pack
(ignore warnings about missing lib folders)

NuGet.exe push

Host on default gallery or custom
e.g. TeamCity, myget.org or filesystem

https://resharper-plugins.jetbrains.com/

https://resharper-plugins.jetbrains.com/
https://resharper-plugins.jetbrains.com/
https://resharper-plugins.jetbrains.com/
https://resharper-plugins.jetbrains.com/

