Spring Framework X Kotlin

Jian Min (Vincent) Huang

w5

About Me

o W https://jianminhuang.cc
728 Coder, /* Speaker, B Mentor and #" Leader
o & Joint of JVM Backend and DevOps

e ‘I Google Developer Expert (Kotlin)

e M Cofounder of PureFunc Inc.
% https://ithelp.ithome.com.tw/users/20119361/ironman/3973

https://jianminhuang.cc/
https://ithelp.ithome.com.tw/users/20119361/ironman/3973

Agenda

Why Spring Framework ?

3 Question ™" Why Kotlin ?

Why Backend Javer Should Try Kotlin ?

Why Spring Framework

Most Popular & Comprehensive JVM Framework ¥ unstar 44.9k

What can Spring do?

&

Microservices

Quickly deliver
production-grade features
with independently

evolvable microservices.

Reactive

Spring's asynchronous,
nonblocking architecture
means you can get more

from your computing

resources.

Cloud

Your code, any cloud—we've
got you covered. Connect
and scale your services,

whatever your platform.

Web apps

Frameworks for fast, secure,
and responsive web
applications connected to

any data store.

Event Driven Batch

Serverless

The ultimate flexibility. Scale Integrate with your Automated tasks. Offline

up on demand and scale to enterprise. React to processing of data at a time

zero when there’s no business events. Act on your to sit you

demand. streaming data in realtime.

Why Spring Framework

Spring is everywhere

Spring's flexible libraries are trusted by developers all

over the world. Spring delivers delightful experiences
to millions of end-users every day—whether that's

4 , or countless other

innovative solutions. Spring also has contributions
from all the big names in tech, including Alibaba,

Amazon, Google, Microsoft, and more.

Spring is flexible

Spring’s flexible and comprehensive set of extensions
and third-party libraries let developers build almost
any application imaginable. At its core, Spring
Framework’s and

features provide the
foundation for a wide-ranging set of features and
functionality. Whether you're building secure, reactive,
cloud-based microservices for the web, or complex
streaming data flows for the enterprise, Spring has
the tools to help.

Spring is productive

<@

Spring Boot transforms how you approach Java
programming tasks, radically streamlining your
experience. Spring Boot combines necessities such as
an application context and an auto-configured,
embedded web server to make

development a cinch. To go even faster, you can
combine Spring Boot with Spring Cloud's rich set of
supporting libraries, servers, patterns, and templates,
to safely deploy entire microservices-based
architectures into the cloud, in record time.

Spring is fast

Our engineers care deeply about performance. With
Spring, you'll notice fast startup, fast shutdown, and
optimized execution, by default. Increasingly, Spring
projects also support the reactive (nonblocking)
programming model for even greater efficiency.
Developer productivity is Spring’s superpower. Spring
Boot helps developers build applications with ease
and with far less toil than other competing paradigms.
Embedded web servers, auto-configuration, and “fat
jars” help you get started quickly, and innovations like

/eReload in Spring DevTools mean developers can
iterate faster than ever before. You can even start a
new Spring project in seconds, with the Spring

Initializr at start.sprin;

N

Spring is secure

Why Spring Framework

Spring has a proven track record of dealing with
security issues quickly and responsibly. The Spring
committers work with security professionals to patch
and test any reported vulnerabilities. Third-party
dependencies are also monitored closely, and regular
updates are issued to help keep your data and
applications as safe as possible. In addition,

makes it easier for you to integrate
with industry-standard security schemes and deliver
trustworthy solutions that are secure by default.

Spring is supportive

The is enormous, global, diverse,
and spans folks of all ages and capabilities, from
complete beginners to seasoned pros. No matter
where you are on your journey, you can find the
support and resources you need to get you to the
next level: : ; ;

; , or even formal

Why Spring Framework

e Spring Language Support
a. DSL

b. Coroutine

c. Transactions

e But Spring 4 Mix Kotlin ? (beware kapt, all open, no args, etc.)

https://docs.spring.io/spring-framework/docs/current/reference/html/languages.html#languages

Why Kotlin

e JVM Ecosystem

a. Tools, Libraries, Resources, etc.

e Java -> Scala, Scala <-x-> Java

e Java -> Kotlin, Kotlin -> Java

Why Kotlin

e constructor, getter & setter, hashcode, equals, toString

e Lombok Framework

e data class
a. Java record class

b. Scala case class

data class User(val username: String, val password: String)

Why Kotlin

e var and val
o fun

e :vsextends and implement

e no semicolon and return

e single return can skip curly brackets
e if is statement no expression

Singleton object

Why Kotlin

Elvis Operator
e Type Inference and Aliases

e Powerful Collections

e Named Arguments
e Null Check and Safety

e Pretty Lambda as Java &
String Interpolation

Why Kotlin

Pattern Matching

e Operator Overloading
e Infix Notation

e Destructuring Declaration

e Scoped Function
e Extension Function
Free to choose OO or FP

Should Backend Javer Use Kotlin ?

e Kotlinis a fantastic language

e But if your Java Spring techinque stack still on Web MVC

e TIt's areasonable choice for keeping Java

But...

e If your Java Spring techinque stack is on Web Reactive

e Linus Torvalds: "Talk is cheap. Show me the code.”

Servlet, Per Req Per Thread (Blocking)

private fun getBlockResponse(ms: Long) = webClient.get()
uri("http://$domain:8888/delay/ms/$ms")
.retrieve()
.bodyToMono(object : ParameterizedTypeReference<Map<x, *>>() {})
.block()

Servlet, Per Req Per Thread (Blocking)

fun blockMvc(timel: Long, time2: Long, time3: Long) =
run {

val delayTimelRes

val delayTime2Res

val delayTime3Res

getBlockResponse(timel)!! ["totalTimeMillis"]
getBlockResponse(time2)!! ["totalTimeMillis"]
getBlockResponse(time3)!! ["totalTimeMillis"]

mapOf(
"delay${timel}Res" to delayTimelRes,
"delays{time2}Res" to delayTime2Res,
"delay${time3}Res" to delayTime3Res

Servlet, AsyncContext (Future)

private fun getFutureResponse(ms: Long) = webClient.get()
uri("http://$domain:8888/delay/ms/$ms")
.retrieve()
.bodyToMono(object : ParameterizedTypeReference<Map<x, *>>() {})
.toFuture()

Servlet, AsyncContext (Future)

fun async(timel: Long, time2: Long, time3: Long) =
arrayOf(getFutureResponse(timel), getFutureResponse(time2), getFutureResponse(time3))
et {
allof(*it)
.thenApply { v —>
return@thenApply it.map { vl -> vl.get() }
}.thenApply { v —>
mapOf (
"delay${timel1}Res" to v[0] ["totalTimeMillis"],
"delay${time2}Res" to v[1]["totalTimeMillis"],
"delay${time3}Res" to v[2]["totalTimeMillis"]

WebFlux, Project Reactor

private fun getMonoResponse(ms: Long) = webClient.get()
uri("http://$domain:8888/delay/ms/$ms")
.retrieve()
.bodyToMono(object : ParameterizedTypeReference<Map<x, *>>() {})

WebFlux, Project Reactor

fun flux(timel: Long, time2: Long, time3: Long) =
Flux.mergeSequential(getMonoResponse(timel), getMonoResponse(time2), getMonoResponse(time3))
.collectList()
.map { v ->
mapOf(

"delay${timel}Res" to v[0] ["totalTimeMillis"],
"delay${time2}Res" to v[1]["totalTimeMillis"],
"delay${time3}Res" to v[2]["totalTimeMillis"]

WebFlux, Coroutine

private suspend fun getAwaitResponse(ms: Long) = webClient.get()
uri("http://$domain:8888/delay/ms/$ms")
.retrieve()
.awaitBody<Map<String, Long>>()

WebFlux, Coroutine

suspend fun coroutine(timel: Long, time2: Long, time3: Long) =
coroutineScope {

val delayTimelRes

val delayTime2Res

val delayTime3Res

async(Dispatchers.I0) { getAwaitResponse(timel) }
async(Dispatchers.I0) { getAwaitResponse(time2) }
async(Dispatchers.I0) { getAwaitResponse(time3) }

mapOf(
"delay${timel}Res" to delayTimelRes.await() ["totalTimeMillis"]!!,
"delay${time2}Res" to delayTime2Res.await() ["totalTimeMillis"]!!,
"delays{time3}Res" to delayTime3Res.await()["totalTimeMillis"]!!

Servlet, Per Req Per Thread (Blocking)

fun blockMvc(timel: Long, time2: Long, time3: Long) =
run {

val delayTimelRes

val delayTime2Res

val delayTime3Res

getBlockResponse(timel)!! ["totalTimeMillis"]
getBlockResponse(time2)!! ["totalTimeMillis"]
getBlockResponse(time3)!! ["totalTimeMillis"]

mapOf(
"delay${timel}Res" to delayTimelRes,
"delays{time2}Res" to delayTime2Res,
"delay${time3}Res" to delayTime3Res

Conclusion

Why Spring Framework ?

3 Question < Why Kotlin ?

Why Backend Javer Should Try Kotlin ?

