Data Science Datalore Enterprise New Products Python Releases Teams

Datalore Enterprise для команд Data Science

Read this post in other languages:
English

Jupyter-ноутбуки хоть и вызывают споры, однако все равно являются самым часто используемым инструментом для решения задач Data Science. Ноутбуки просты в личном использовании. Но если вы когда-либо пробовали организовать командную работу с ними, то наверняка сталкивались со сложностями. Именно поэтому мы в JetBrains решили выпустить специальную версию Datalore Enterprise для команд Data Science!

Аннонсируем Datalore Enterprise - Умная Jupyter-среда для команд Data Science

Datalore — это платформа для совместной работы с Jupyter-ноутбуками. И сегодня мы рады сообщить, что Datalore теперь доступен не только в облаке, но и для установки на серверы компании

В привычные Jupyter-ноутбуки мы интегрировали умную поддержку написания кода из PyCharm, персистентное хранилище данных, сервисы по аутентификации, гранулярную настройку среды и менеджмент вычислительных ресурсов, версионирование, а также возможность работать вместе в реальном времени.

Читайте дальше, чтобы узнать о возможностях Datalore для командной работы.

Настройте командную среду  

Многие команды по-прежнему тратят огромное количество времени и сил на создание собственных решений вокруг Jupyter-технологий.

Мы не стараемся изменить привычную для вас среду работы, а лишь предлагаем сделать построение командной среды комфортным и предоставляем многие решения из коробки. При этом мы оставляем вам простор для дальнейшей настройки.

Аутентификация пользователей

Вместе с Datalore компании получают доступ к JetBrains Hub — инструменту, который позволяет настроить практически любой возможный метод аутентификации пользователей. Чтобы приступить к работе, членам вашей команды достаточно перейти по вашей ссылке на Datalore и авторизоваться на платформе.

Настройка окружения

Вы можете заранее настроить несколько дефолтных командных сред. При необходимости пользователи смогут динамически менять список пакетов для каждого ноутбука, используя Library Manager.

Менеджер библиотек в Datalore

Управление вычислительными ресурсами

Вы можете подключить любые используемые вами вычислительные ресурсы и сделать их доступными для пользователей через интерфейс Datalore. Более того, вы можете настроить внутренние планы, чтобы контролировать совместное использование ресурсов членами вашей команды.

Подключение данных

Мы интегрировали в Datalore собственное персистентное хранилище, дающее быстрый доступ к ноутбукам и данным. Сейчас вы можете подключиться к любой базе данных из кода на Python, а в ближайшем будущем мы планируем добавить возможность работать с БД через интерфейс.

Datalore поддерживает установку бакетов AWS S3, а логины и пароли вы можете безопасно хранить в секретных переменных.

Создайте общую экосистему для работы

В Datalore работа команд осуществляется в вокрспейсах — общих пространствах для данных, настроек среды и ноутбуков. Воркспейсы снижают риск того, что сотрудники оставят или потеряют свою работу на локальных машинах, что является безусловным плюсом для компаний. Также они облегчают сотрудникам совместную работу над проектами и позволяют переиспользовать имеющиеся наработки.

Вы можете поделиться ноутбуком или целым воркспейсом всего за несколько кликов: для этого настройте права доступа и пригласите коллег по ссылке или через электронную почту. Настройки окружения, данные и другие вложения автоматически станут доступны приглашенным. А командная работа будет происходить в реальном времени, не выходя за пределы вашей приватной сети.

Совместный доступ к Jupyter-ноутбукам в Datalore

Чтобы поделиться результатами с коллегами не технического профиля, вы можете свернуть ячейки кода, опубликовать статическую копию ноутбука и поделиться отчетом с помощью ссылки. Коллеги затем смогут прокомментировать любую ячейку и поделиться своим мнением.

Мы интегрировали в Datalore систему контроля версий, чтобы отслеживать прогресс и при необходимости отменять изменения. Вы можете создавать контрольные точки, просматривать различия между версиями и возвращаться к предыдущим состояниям в любое время. Мы не храним историю аутпутов ноутбуков, благодаря чему вам будет легче просматривать изменения в коде.

Улучшите продуктивность написания кода

Платформа Datalore ориентирована на работу с ноутбуками. Наша главная цель — помочь специалистам Data Science работать с кодом более продуктивно.

Мы встроили в Datalore возможности анализа кода из PyCharm. Они включают автодополнение кода, подсказки из документации, рефакторинги и быстрые исправления. Это помогает писать более качественный код с меньшей когнитивной нагрузкой, позволяя сосредоточиться на достижении бизнес-результатов.

Анализ кода в Datalore

Чтобы вы не тратили много времени на написание шаблонного кода для визуализаций, мы добавили виджет автоматического создания графиков для Pandas DataFrames. Он помогает быстро выявлять тенденции в данных и генерирует шаблоны кода для дальнейшей кастомизации.

Автоматическая генерация графиков в Datalore

Попробуйте Datalore в своей команде

30-дневная бесплатная пробная версия и возможности по продлению

Ваша команда может попробовать Datalore Enterprise бесплатно в течение 30 дней. В процессе установки мы будем на связи и ответим на любые ваши вопросы.

После пробного периода вы сможете приобрести платную подписку на Datalore по цене 125 долларов США за пользователя в месяц. В эту стоимость входит приоритетная поддержка для корпоративных клиентов и возможность напрямую влиять на развитие продукта. Мы регулярно встречаемся с нашими первыми пользователями и следим за тем, как проходит интеграция Datalore в их процессы.

Чтобы запросить пробную версию и задать любые вопросы, свяжитесь с нами либо запишитесь на встречу с нашей командой.

Технические требования

В настоящее время доступны два типа установки:

  • на кластер Kubernetes
  • в частной учетной записи AWS

Процесс включает установку и настройку ваших экземпляров Datalore и JetBrains Hub. Для получения дополнительной информации ознакомьтесь с нашим руководством по установке.

Вы также можете бесплатно попробовать облачную версию Datalore. Настройка и запуск займут всего несколько секунд, после чего вы сможете сразу начать знакомиться с основной функциональностью.

И мы уверены, вам есть что сказать. Напишите в комментариях, что больше всего болит при работе с Jupyter-ноутбуками. А мы постараемся решить это в Datalore 🙂

Ну а чтобы быть в курсе обновлений, подписывайтесь на наш блог и Twitter!

Ваша команда Datalore
The Drive to Develop

Оригинал статьи на Habr.com

Discover more